Agentic Trading Challenge

Technical Interview — Backend / Al Engineering

February 18, 2026

Agentic Trading Challenge

Confidential

Contents
1 Overview 2
2 Technical Constraints 2
2.1 Provided vs. Candidate-Implemented oo 2
3 Available Tools 2
3.1 GetStockPrice e 3
3.2 GetNews o 3
3.3 AnalyzeSentiment 3
3.4 GetHistoricalPrices e 3
3.5 GetFinancials 4
3.6 GetlnsiderTrading L 4
3.7 GetAnalystRatings 4
4 Expected Workflow 4
5 Expected Output Format 5
5.1 Example Scenarios 5
6 Implementation Guide 6
6.1 Manual Function Calling 6
6.1.1 System Prompt Structure oo oL 6
6.1.2 Parsing Strategy 6
6.1.3 Tool Execution & Result Injection 6
7 Getting Started 6
8 Evaluation Criteria 7
8.1 Automated Tests (Pass / Fail) 7
8.2 Acceptance Checklist 7
8.3 Scoring Rubric L 8
9 Bonus (Optional) 8
Appendix A: Mock Tool Data 8
Appendix B: DeepSeek API Reference 11

Agentic Trading Challenge Confidential
O O (o]

Overview

In this challenge you will build an agentic stock analysis workflow in Go. Your program
will:

1. Accept a stock ticker symbol (e.g. AAPL) as a command-line argument.
2. Use the DeepSeek Chat LLM to autonomously decide which tools to call.

3. Execute tool calls (get price data, fetch news, analyze sentiment, retrieve historical prices,
financial metrics, insider trades, and analyst ratings) and feed results back to the LLM.

4. Repeat the loop until the LLM produces a final Buy / Sell / Hold recommendation.
5. Output a structured JSON AnalysisReport.
The high-level flow is:
User Input — LLM = Tools — Final Report (JSON)

You are provided with a project skeleton that includes mock tool implementations, data types,
and a partially implemented LLM client. Your job is to complete the agent loop and the
tool-call parsing logic.

Technical Constraints

o Language: Go 1.22+ (standard library only — no external dependencies)
o LLM: DeepSeek Chat (deepseek-chat) via OpenAl-compatible REST API

e No AI frameworks: Do not use LangChain, Llamalndex, or similar. Manual function
calling only.

e Output: Structured JSON to stdout; errors to stderr

Provided vs. Candidate-Implemented

Component Status File

Data types Provided internal/models/types.go
Mock tools (7 tools) Candidate internal/tools/tools.go
LLM client (HTTP call) Provided internal/llm/client.go
Tool-call parsing Candidate internal/llm/client.go
Tool dispatch (executeTool) Candidate internal/agent/agent.go
Agent loop Candidate internal/agent/agent.go
System prompt design Candidate internal/agent/agent.go
CLI entry point Provided cmd/analyzer/main.go

Available Tools

The following mock tools are provided in internal/tools/tools.go. They return determin-
istic data so you can focus on the agent logic.

Agentic Trading Challenge Confidential

GetStockPrice

func GetStockPrice(symbol string) (*models.StockPrice, error)

JSON schema for tool call:
{

"name": "GetStockPrice",
"arguments": { "symbol": "AAPL" }
}

Returns: symbol, price, change, change_ pct, volume, high, low.

GetNews

func GetNews (symbol string) ([]lmodels.NewsItem, error)

JSON schema for tool call:
{

"name": "GetNews",
"arguments": { "symbol": "AAPL" }
}

Returns: array of news items with title, source, summary, url, published.

AnalyzeSentiment

func AnalyzeSentiment (text string) (*models.SentimentResult, error)

JSON schema for tool call:
{

"name": "AnalyzeSentiment",
"arguments": { "text": "Apple Reports Record Q4 Revenue..." }
3

Returns: text, sentiment (positive/negative/neutral), confidence.

GetHistoricalPrices

func GetHistoricalPrices(symbol string) ([]lmodels.HistoricalPrice,
error)

JSON schema for tool call:
{

"name": "GetHistoricalPrices",
"arguments": { "symbol": "AAPL" }
¥

Returns: array of 5 entries with date, open, high, low, close, volume.

oW N

N

Agentic Trading Challenge Confidential
g g g

GetFinancials

func GetFinancials(symbol string) (*models.FinancialData, error)

JSON schema for tool call:
{

"name": "GetFinancials",
"arguments": { "symbol": "AAPL" }
}

Returns: symbol, revenue, net_ income, eps, pe_ ratio, market_ cap, dividend_ yield.

GetlInsiderTrading

func GetInsiderTrading(symbol string) ([]lmodels.InsiderTrade, error)

JSON schema for tool call:
{

"name": "GetInsiderTrading",
"arguments": { "symbol": "AAPL" }
}

Returns: array of insider trades with name, title, trade_ type, shares, price, date.

Get AnalystRatings

func GetAnalystRatings (symbol string) ([]Jmodels.AnalystRating, error)

JSON schema for tool call:
{

"name": "GetAnalystRatings",
"arguments": { "symbol": "AAPL" }
}

Returns: array of analyst ratings with firm, rating, price_ target, date.

Expected Workflow

The agent should follow this loop:

1. Initialize: Create a conversation with a system prompt that describes the agent’s role and
available tools.

2. User message: Add a user message asking the LLM to analyze a specific stock symbol.
3. LLM call: Send the conversation to the DeepSeek API.

4. Parse response: Check if the LLM’s response contains a tool call (JSON with name and
arguments).

5. If tool call: Execute tool calls (get price, news, sentiment, history, financials, insider
trades, analyst ratings), append the result as a tool message, and go to step 3.

Agentic Trading Challenge

6. If final answer: Parse the response as an AnalysisReport and return it.

7. Safety: Stop after a maximum number of iterations to prevent infinite loops.

The agent must be autonomous. The LLM decides which tools to call and in what
order. Do not hardcode a fixed sequence of tool calls (e.g. “always call GetStockPrice
first, then GetNews”). The LLM should drive the workflow.

Expected Output Format

The final output should be a JSON AnalysisReport printed to stdout:

{
"symbol": "AAPL",
"recommendation": "Buy",
"confidence": 0.85,

"reasoning": "Strong Q4 earnings,

upward price momentum suggest continued growth.",

"price": {
"symbol": "AAPL",
"price": 178.72,
"change": 2.35,
"change_pct": 1.33,
"volume": 52341000,
"high": 179.50,
"low": 175.80

}’

"news": [... 1],

"sentiment": {
"text": "...",

"sentiment": "positive",

"confidence": 0.85

Example Scenarios

Symbol Expected

Reasoning

AAPL Buy
GOOGL Hold
TSLA Buy
NVDA Sell
META Buy
AMZN Hold

Positive earnings, analyst upgrades, price
up 1.33%

Mixed signals: strong cloud growth but
antitrust concerns

Deliveries beat expectations, strong mo-
mentum (+3.41%)

High P/E ratio (72.6), declining price
trend, insider selling

Strong ad revenue growth, Reality Labs
turnaround, analyst upgrades

AWS growth slowing, flat price action,
mixed analyst views

Confidential

positive analyst sentiment,

Agentic Trading Challenge Confidential
g g g

Implementation Guide

Manual Function Calling

Since DeepSeek’s API is OpenAl-compatible but we are implementing function calling manually,
here is the approach:

6.1.1 System Prompt Structure
Your system prompt should clearly define:
o The agent’s role (stock analyst)
e Each available tool: name, parameters, JSON call format
e Instructions: respond with tool-call JSON when needing data

o Instructions: respond with final AnalysisReport JSON when done

6.1.2 Parsing Strategy
The LLM may return a tool call in several formats:

o Raw JSON: {"name": "GetStockPrice", "arguments": <{...}}

e Inside markdown code fences: "‘json ... "¢

e With surrounding explanatory text

Your ParseToolCall function should handle all of these cases. A robust approach:

func (¢ *Client) ParseToolCall(content string) (*models.ToolCall, error
) o
// 1. Strip markdown code fences tf present
// 2. Find JSON substring containing "name" and "arguments'
// 3. Unmarshal into models.ToolCall
// 4. Return nil if no tool call found (it’s a final answer)
return nil, nil

6.1.3 Tool Execution & Result Injection

After parsing a tool call:

—_

. Call the corresponding function from internal/tools/

2. Marshal the result to JSON

3. Append to conversation as a message with role "tool" and the tool’s name
4

. Send the updated conversation back to the LLM

Getting Started

1. Clone the repository:

Agentic Trading Challenge Confidential

2.

3.

4.

git clone <repo-url>
cd stock-analyzer

Configure your API key:

export DEEPSEEK_API_KEY="your -key-here"

Build:

make build

Run:

./bin/analyzer AAPL

The skeleton compiles out of the box. Your task is to implement the 7 mock tool functions, the
tool dispatch in executeTool, and the ParseToolCall method.

Evaluation Criteria

Automated Tests (Pass / Fail)

The repository includes a test suite. Run it with:

make test

Out of the box, 7 tests pass and 33 tests fail. Your goal is to make all 40 tests pass.

Package File Initial Tests

internal/tools tools_test.go 18 fail Mock tools: 7 functions x 6 stocks
internal/llm client_test.go 4 pass /3 fail ParseToolCall: raw JSON, code fences, surrounding
internal/agent agent_test.go 1 pass / 12 fail Tool dispatch, agent loop, conversation

Acceptance Checklist

Your submission passes if all of the following hold:

1.
2.

©w

NS o e

make build compiles without errors
make test — all 40 tests pass

./bin/analyzer AAPL produces valid AnalysisReport JSON to stdout (with a valid API
key)

The agent makes > 2 tool calls before producing a final answer (not hardcoded)
recommendation is one of Buy, Sell, or Hold
confidence is in the range [0.0, 1.0]

reasoning is a non-empty string

Agentic Trading Challenge Confidential

Scoring Rubric

Criterion Weight Description

Agent Loop 30% Correct agentic loop: LLM drives tool selection,
multi-turn conversation, termination condition

Function Calling 25% Robust parsing of tool calls from LLM re-
sponses, correct dispatch and result injection

Code Quality 20% Clean, idiomatic Go; proper error handling;
clear naming

Output 15% Correct JSON format; reasonable recommenda-
tion with supporting data

Edge Cases 10% Handles unknown symbols, malformed LLM re-

sponses, API errors gracefully

Bonus (Optional)

If you finish early, consider implementing any of the following;:

Streaming: Use SSE streaming for the DeepSeek API and display partial responses in
real time.

Retries with backoff: Implement exponential backoff for transient APT errors (429, 500,
503).

Multi-turn memory: Allow the agent to remember previous analyses across runs (e.g.
file-based cache).

Concurrent tool calls: Use goroutines to execute independent tool calls in parallel (e.g.
fetch price and news concurrently).

Additional tests: Extend the test suite with your own edge-case tests.

Appendix A: Mock Tool Data

The tools return deterministic data. Below are the exact outputs for the six supported symbols.

GetStockPrice

Symbol Price Change Change% Volume High / Low
AAPL 178.72 +2.35 +1.33% 52.3M 179.50 / 175.80

GOOGL 141.80 —0.95 —0.67% 23.1M 143.20 / 140.55
TSLA 248.50 +8.20 +3.41% 98.8M 251.00 / 239.80
NVDA 875.30 —12.40 —1.40% 45.2M 890.00 / 870.15

META 505.75 +15.30 +3.12% 32.8M 510.20 / 489.60
AMZN 178.25 +0.75 +0.42% 28.5M 179.80 / 176.90
Other 100.00 +0.50 +0.50% 10.0M 101.00 / 99.00

GetNews
AAPL (3 articles):

Agentic Trading Challenge

Confidential

1. “Apple Reports Record Q4 Revenue” (Reuters) — strong iPhone and Services growth
2. “Apple Announces New Al Features” (Bloomberg) — on-device Al capabilities
3. “Analysts Raise Apple Price Target” (CNBC) — price targets raised after earnings

GOOGL (2 articles):

1. “Google Cloud Revenue Surges 28%” (Reuters) — beating analyst estimates
2. “DOJ Antitrust Case Update” (WSJ) — critical phase of antitrust case

TSLA (2 articles):

1. “Tesla Deliveries Beat Expectations” (Bloomberg) — 484k vehicles, beat 460k estimate

2. “Tesla Expands Charging Network” (Electrek) — doubling Supercharger network

NVDA (3 articles):

1. “NVIDIA AI Chip Demand Plateaus” (Reuters)
2. “NVIDIA CEO Sells $50M in Stock” (Bloomberg)
3. “NVIDIA Valuation Concerns Rise” (WSJ)

META (2 articles):

1. “Meta Reality Labs Shows Turnaround” (Bloomberg)

2. “Meta Ad Revenue Grows 25%” (Reuters)

AMZN (2 articles):

1. “AWS Growth Slows to 12%” (CNBC)
2. “Amazon Expands Same-Day Delivery” (Reuters)

Other symbols: 1 generic article (“<SYMBOL> Trades Steady”).

AnalyzeSentiment

Sentiment is determined by keyword matching:

o Positive keywords: record, beat, surge, raise, growth, strong, exceeded, new high

o Negative keywords: decline, drop, fall, loss, miss, antitrust, lawsuit, warning
o If positive count > negative = "positive", and vice versa. Tie = "neutral".

GetHistoricalPrices

Returns 5 most recent trading days (oldest first). The last entry’s close matches the current
price. AAPL shows an upward trend. NVDA shows a downward trend.

GetFinancials

Symbol Revenue (B) Net Income (B) EPS P/E Market Cap (B) Div Yield
AAPL 383.28 97.00 6.42 278 2800.00 0.55%
GOOGL 307.39 73.80 5.80 244 1780.00 0.50%
TSLA 96.77 15.00 4.73 52.5 790.00 0.00%
NVDA 60.92 29.76 12.06 72.6 2150.00 0.03%
META 134.90 39.10 15.02 33.7 1300.00 0.40%
AMZN 574.78 3042 290 61.5 1870.00 0.00%
Other 10.00 1.00 1.00 15.0 50.00 0.00%

Agentic Trading Challenge Confidential

GetlInsiderTrading

o AAPL: 2 Buy trades (bullish signal)
e GOOGL: 1 Sell trade

e TSLA: 1 Buy trade

o« NVDA: 2 Sell trades (bearish signal)
e META: 1 Buy trade

e AMZN: 1 Sell trade

e Unknown symbols: empty list

GetAnalystRatings

o AAPL: 3 ratings (2 Buy, 1 Hold) — majority bullish

o GOOGL: 2 ratings (1 Hold, 1 Buy) — mixed

o TSLA: 2 ratings (1 Buy, 1 Hold) — mixed bullish

o« NVDA: 3 ratings (1 Sell, 1 Hold, 1 Buy) — mixed bearish
o META: 2 ratings (2 Buy) — bullish

o AMZN: 2 ratings (2 Hold) — neutral

e Unknown symbols: empty list

10

oW N =

t

o

oW N e

Agentic Trading Challenge Confidential

Appendix B: DeepSeek API Reference

Official Documentation

o Getting Started: https://api-docs.deepseek.com/
o Chat Completion API: https://api-docs.deepseek.com/api/
create-chat-completion

Endpoint

POST https://api.deepseek.com/chat/completions

Note: The path /v1/chat/completions also works for OpenAl SDK compatibility, but /v1
has no relationship to the model version.

Headers

Content -Type: application/json
Authorization: Bearer <DEEPSEEK_API_KEY>

Available Models

Model ID Description

deepseek-chat DeepSeek-V3 (use this for the challenge)
deepseek-reasoner DeepSeek-V3 with chain-of-thought reasoning

Request Body

{
"model": "deepseek-chat",
"messages": [
{"role": "system", "content": "You are a stock analyst..."},
{"role": "user", "content": "Analyze AAPL"},
{"role": "assistant", "content": "{\"name\": \"GetStockPrice\",
---}”},
{"role": "tool", "name": "GetStockPrice", "content": "{...}"}
]
}

Response Body

{
"id": "chatcmpl-abcl123",
"object": "chat.completion",
"model": "deepseek-chat",
"choices": [
{
"index": O,
"message": {
"role": "assistant",

"content": "..."

+,

11

https://api-docs.deepseek.com/
https://api-docs.deepseek.com/api/create-chat-completion
https://api-docs.deepseek.com/api/create-chat-completion

Agentic Trading Challenge

Confidential

"finish_reason": "stop"
3
1,
"usage": {
"prompt_tokens": 256,
"completion_tokens": 64,

"total_tokens": 320
}
}

curl Example

curl -X POST https://api.deepseek.com/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $DEEPSEEK_API_KEY" \

_d :{
"model": "deepseek-chat",
"messages": [
{"role": "user", "content": "Hello, who are you?"}
]
}7

12

	Overview
	Technical Constraints
	Provided vs. Candidate-Implemented

	Available Tools
	GetStockPrice
	GetNews
	AnalyzeSentiment
	GetHistoricalPrices
	GetFinancials
	GetInsiderTrading
	GetAnalystRatings

	Expected Workflow
	Expected Output Format
	Example Scenarios

	Implementation Guide
	Manual Function Calling
	System Prompt Structure
	Parsing Strategy
	Tool Execution & Result Injection

	Getting Started
	Evaluation Criteria
	Automated Tests (Pass / Fail)
	Acceptance Checklist
	Scoring Rubric

	Bonus (Optional)
	Appendix A: Mock Tool Data
	Appendix B: DeepSeek API Reference

